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Much information now exists on factors affecting toughness in composites. 
Theoretical expressions for fracture energy also abound, in response to the many 
factors that have been identified as contributing to toughness in fibre reinforced materials. 

This material is reviewed from the point of view of the effect of aspect ratio on 
toughness. Expressions relating fracture energy to aspect ratio are derived and compared 
with experimental data. It is shown that in many cases aspect ratio should be as large as 
possible. There are a few cases, however, where the aspect ratio should be as close to 
the critical value as possible. 

1. Introduction 
A lot of work has been carried out in the last 
few years on the various factors that contribute 
to toughness of a fibre-reinforced composite. At 
least five different interactions have been 
identified, all of which can, in certain cases, 
contribute to fracture. In addition there are, of 
course, effects which will occur in the absence 
of any interaction, i.e. the matrix fracture surface 
energy in the absence of fibres, 7m, and the 
fracture energy of ductile fibres, ~a. However, 
both of these are sometimes affected by the 
interaction. 

Taking the matrix first, it has been observed 
that small diameter graphite fibres tend to 
reduce the width of the plastic zone on either 
side of a crack in ductile metals [1]. This 
reduces the value of ~'m. 

In the case of the very long ductile fibres (cold 
drawn, low carbon steel), Helfet and Harris [2] 
have found that when embedded in polymers, 
the wires behaved as though the matrix were not 
present; the major part of the work of fracture 
could be accounted for by taking the area under 
the force-distance curve for a single fibre and 
multiplying by the number of fibres fractured. 
On the other hand, however, ductile steel wires 
embedded in aluminium were observed to neck 
at the crack tip [3]. A major part of the fracture 
energy of the composite was accounted for by 
the work in the fibres over a distance of only 
about one diameter on either side of the crack. 

494 

Despite this apparent plastic constraint, the 
fibres were able to contribute a large component 
to the work of fracture because the plastic 
strains in the necks achieved high values 
( ~ 1 O0 %). 

Turning now to more direct interaction effects, 
it was early recognized that easy splitting of the 
matrix parallel to the fibres caused deflection of 
cracks, and made crack propagation more 
difficult [4]. (This is particularly noticeable in 
green wood.) The associated energy will be 
designated 7ms. 

Another interaction, much investigated, is the 
work of fibre pull-out. With short fibres, a crack 
can progress across the matrix without breaking 
the fibres. Instead of breaking they pull out, 
doing a large amount of work. This is sometimes 
thought to take place even when initially 
continuous, but brittle fibres, have been used 
[5-8]. This term will be designated ~tp. 

Smaller amounts of work arise owing to fibre 
retraction into the matrix after brittle fracture 
at the crack plane. The elastic energy in the 
fibre at the instant of rupture, 7fp, is one com- 
ponent [9], and the matrix work as the fibre is 
being pulled out prior to retraction, 7mr, is 
another [10-12]. 

Finally, shearing effects arise when ductile 
wires cross cracks obliquely. These have been 
evaluated and the corresponding fracture work 
calculated approximately by Hing and Groves 
[13] and by Helfet and Harris [2]. Flexure of the 
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wires also occurs, but is thought to contribute 
little work compared with that due to shear [13 ]. 
The various factors thought to contribute to the 
fracture surface energy are listed in Table I. 

In most  cases, the fracture energy is a maxi- 
m u m  if the fibres pullout over a distance equal 
to half their critical length for reinforcement. 
At first sight, this would seem to indicate that 
composites should be made with fibres of  the 
critical length, in order to make the material 
as tough as possible. However, this would have 
a serious effect on strength and modulus [14]. 
Some opt imum fibre length thus seems to be 
required, and this paper attempts to bring 
together ideas based on fibre fracture, and those 
based on fibre pull-out, in an attempt to identify 
the opt imum length. 

2. Theoret ical  considerations 
The simplest cases arise when fibres cross cracks 
by the shortest distance. These will be considered 
first, and after that the additional effects which 
occur when fibres are oblique will be considered. 

2.1. Fibres normal to the crack plane 
Continuous perfectly brittle fibres, which fracture 
at the crack plane, absorb some energy at the 
interface with the matrix, and thus contribute to 
the fracture surface energy an amount  given 
by [10] 

Vtde~u a 
~ f b  + 7 m r  = 27~b 12E~'i (1) 

where d is the diameter, ~u  the ultimate tensile 
strength and Ef the modulus of  the fibre. Ti is the 
interfacial force between fibre and matrix. Short 

fibres, all of  which have the same length, and 
pull-out distance, contribute an amount 

1 
7~p = --~ V~d'cis 2 (2) 

where s is the aspect ratio (length/diameter) of  
the fibres. 

Fibres having aspect ratios greater than the 
critical value of [14] 

so = ~fu/2~'i (3) 

will not all pull out; instead, some will break, 
so the above two expressions should be com- 
bined. 

Consider one face of  the crack. Fracturing 
fibres will contribute an amount of  work, for 
fibres [10], of  

7rd3crfu 3 

2 U ~ b -  48~'iE~ 

(this includes contributions from both 7fb and 
7mf, which in this case are identical). Those 
that pull out will contribute 

UIp = �89 2 
per fibre, where l is the embedded length. I f  
there are n fibres crossing unit area of  crack, then 
the number embedded to a length lying between l 
and l + dl is ndl/L where L is the total fibre 
length. The total fracture work due to combin- 
ing terms for fibre pull-out and fibre fracture is 

= n f  L-~c/2 n f  ~J~ Uf v e l  7J Z j~o/2 2Ufb dl + ~ ao 

which, substituting the expressions for Ufb and 
Ufv comes to 

7 i =  ~Vfd'cise 2 + ~ 1 - �9 (4) 

TABLE I Factors contributing to the work of fracture 

Symbol Origin Form of energy dissipation 

Fibre internal work 7eb Fibre brittle fracture Stored elastic energy 
7rs Fibre bending during pull-out Plastic flow during bending 
7ra Fibre ductile fracture Plastic flow and necking 

Interface work 7mr Difference in tensile strains Frictional sliding or plastic 
across interface shear in matrix 

7Iv Fibre pull-out Frictional sliding or plastic 
shear in matrix 

Interface and matrix work 7ms 

Matrix internal work ym 

Splitting of matrix parallel to 
fibres 

Matrix fracture 

Matrix surface energy and 
fibre-matrix bond energy 

Matrix surface energy and 
plastic flow 
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Now consider fibres which are not perfectly 
brittle. When s < se a proportion of them will 
have sufficient length embedded on each side of 
the crack to fracture, and being ductile, contri- 
bute some internal work to the fracture energy. 
The work due to this will be 

The total fracture surface energy should thus 
come to 

~'T = yi + 7r + (1 - V0 )tm + 7ms �9 (6) 
7ms is the energy absorbed in any splitting of 

the matrix that may occur. It has been investi- 
gated in the case of laminar materials [15], but 
little work on it appears to have been done with 
fibres, so it will not be discussed any further. 

9.2. Fibres crossing cracks obliquely 
Once again, we will first consider fibres that are 
perfectly brittle, and break as soon as a critical 
stress, efu, occurs at any point on, or in, the 
fibre. (We are thus taking no account of either 
the work of fracture of the fibres, or the statistical 
nature of the flaws that determine the strength 
of  brittle fibres.) 

For  fibres all parallel, and crossing a crack 
at an angle q~ to the crack plane normal, flexure 
will occur, resulting in an increase in stress on 
the convex side of the curved fibres, so that they 
fail at a lower tensile stress, afro, where 
elm -~ a~u(1 - A tan ~b). Here A is a constant, 
proportional to the ratio of fibre ultimate tensile 
strength to matrix flow stress [16], so long as 
the matrix does not crumble beneath the concave 
portion of the curved part of the fibre locus. For  
tanq~ > l /A ,  O'fm is assumed to be zero. The 
weakening decreases the critical aspect ratio 
according to the equation 

seo = se(1 - A tan ~) . (7) 
The work of fracture is also reduced, since it is 
proportional to Crfm 8. Thus 

7fb 4 = 27fb(1 -- A tan ~)a (1 + B tan ~ ~).  (8) 
Here B is a constant, approximately proportional 
to the fibre breaking strain, and arises because 
the fibre, in being flexed, pushes aside some of  
the surrounding matrix. 

Following the same reasoning as before we 
find that 

1 
Ti~ = -~  Vrd'risc~ ~ 

(~  8r, ( ~ ) ) ( 9 )  
+ ~ ( 1  +Btan2r  1 -  
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For ductile fibres, such weakening due to 
flexure does not appear to occur. Thus se 4 = se. 
Instead of Equation 8, therefore, we have 

7tbO = 27fb(1 + B tan 2 4)) (8a) 

and for Equation 9 we have 

1 
7i(, = -~  Vf&'ise 2 

+ ~ ( l + B t a n  Sr 1 -  �9 (9a) 

In addition, shear work will be done on ductile 
fibres that pull out. The expression used by Hing 
and Groves [13] can be adapted to suit the case 
where not all fibres pull out. The work done in 
shearing a single fibre as it pulls out is 

1 
Urs = ~-~ ~d2cre tan q~ 

for tan ~ < 2 where crf is the tensile flow stress 
of the fibre or wire. For tan q~ > 2 the fibres will 
break because they will be unable to withstand 
the shearing forces. 

The number of  fibres embedded to a length 
between l and l + dl is dn = n dl/(L cos q~) per 
unit area, if n is the number of fibres per unit 
area normal to the fibre direction. These fibres 
contribute an amount of internal shear work of 

n~'d~crf sin 
Ufs dn = '32LcosZ~ l d l .  

The total contribution these fibres make to the 
fracture surface energy is 

V~af sin~ f~o/~ 
r ~ -  g-L-?o--s ~Jo  ld l  

Vf(rfd sin ~ se ~ 
= ' 6 4 c o s  ~ " s -q '"  (10) 

In addition, there will be the work of fibre 
fracture, 

as given in Equation 5. 
Finally, to propagate a crack in a plane 

perpendicular to a planar random array of 
brittle fibres will require an amount of work 
obtained by integrating Equation 9 with respect 
to ~b over the range 0 to tan-* 1/A and dividing 
by the range of possible q~ values, i.e. rr/2. This 
can be done with sufficient accuracy by using the 
approximate relation [16] 

(1 - A  tan~) 3 (1 + B tan2~) ~- (1 - 2.4,4 tan if) 

where integration is now carried out between 0 
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and q~ with tan ~1 = 1/(2.4A). The result obtained 
is 

7~r = V2 V~d'~:Ol'~ + ~ 1 - - -  ( l l )  

where 

2Se 
Ser = - -  [~b~ + A ln (cos$0] .  (12) 

rr 

For  ductile fibres, the corresponding equation 
to be integrated is Equation 9a and the range of 
angles is 0 to tan -x 2. In addition, Equation 10 
should be integrated over the same range. The 
results are 

y i r  = O.059 Vfd'cise z 

{ ~  4Crfu ( s e)}  + ~ (1 + 0.80B) 1 - ( l la )  

and 

Se 2 
~'fsr = 0.012Vfef ~ �9 (13) 

3. Discussion 
3.1. Toughness- aspect ratio diagrams 
For convenience, Table I I  summarizes the main 
results. Most of  the expressions have their 
maximum values at the critical aspect ratio, 
so = ar~/(2"r 0, and Fig. 1 illustrates the case for 
brittle fibres crossing cracks by the shortest 
distance (Equation 4). The different curves in 
Fig. 1 show the effect of  different fibre breaking 

strains, efu = ~rfu/Ef. The plots are dimensionless, 
but the value of )tmax can be calculated from the 
equation 

1 1 
~ m a x  = ]-2 Vfd 'r iSc2 = 2-4 Vfcr fu lc  (14) 

knowing crfu, and either the critical failure length, 
le, or the diameter, d, and the interfacial stress ~'i. 

The curves show that the lower the fibre 
breaking strain, the more important  it is to use 
fibres with the critical aspect ratio. However, it 
has been found that pull-out effects occur, even 
when fibres are continuous. This will be discussed 
later. 

When brittle fibres cross cracks obliquely, the 
curves for fracture surface energy will have the 
same form as those shown in Fig. 1. The value 
of aspect ratio for the maximum value of V will 
be reduced to Se~ where 

See = so(1 - A tanr  

and the maximum value of ~ will be reduced to 

yema~ = ym~x(1 - A tan r . 
A somewhat similar reduction in Sc and ~'max 
occurs in the planar random case. 

In the ductile fibre case, two additional terms 
have to be taken into account. Fig. 2 is a 
dimensionless plot of these factors, together with 
a plot of  Equation 4 for efu = 0.05 for com- 
parison. The shear term, 7rs, varies with s in 
much the same way as 7~ does. (They are exactly 
the same for Efu = 0.) The fibre ductile fracture 

TABLE II  Expressions relating aspect ratio (s) to fracture surface energy. Vr omitted from all expressions 

Fibre direction Brittle fibres Ductile fibres 

Long Short Long Short 

l 2 { ~  4Crtu [ so ,~  1 ( s o )  1 
N o r m a l t o c r a c k p l a n e  "~d  .. . .  +'- '~ ~ l - s ) ;  ~'~dzis ~ Brit t let  . . . . .  dv, a 1 - -  ]-2d~'ls' 

Sc = (xfu/2~i 

At 4) to crack plane 
normal 

1 

seq~ = so(1 - A tan40 

tanq5 < I/A 

P[ . . . . . .  andom 1 f !  8 " r ~ ( ~ . ~ )  } 1 

2se 
. . . .  g- {,~ - Aln(cos ~)} 

tan4)t = 1/(2.4A) 

i-2 d . . . .  I s  2 + ~ + Btan  2 qS) _ T2 d~'is~ 

and ~ s"~ and Vfa I -- - d~fsin4~ 
64 cos~4) s 

tan$ < 2 

0-059d'r'se a - + - ~  (1 -~ 0.SB) 1 -- s ) ~  "i2 aTiS 

Se e ( ~ )  and 
and 0.012d~r~ ~ and ,/~a 1 - 0.012doffs 

d = fibre diameter 
Et = fibre modulus 
afu = fibre ultimate strength 

T~ = interracial shear stress 
zm = matrix shear flow stress 

A -~ 5.5 ry/,,~u 
B ~ 0.72 crfu/Er 
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Figure 1 The effect of aspect ratio on toughness for materials reinforced by fibres of uniform strength, 
negligible internal work of fracture, and various breaking strains. The fibres are normal to the crack plane. 
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Figure 2 Contributions to fracture energy from shearing fibres (y~s Equation 10) and fracturing fibres (yi Equation 
4 and yf, Equation 5). The curve is plotted 7'i for eea =0.05. 
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Figure 3 Agreement between the modified model and 
reported experimental values for work of fracture. The 
data points for H and H represent the results of Helfet 
and Harris [2] and those for A and S are from Allred and 
Schuster [17]. 

term, however, is zero at the critical length, and 
tends to a maximum as aspect ratio tends to 
infinity. 
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I t  is clear that  with ductile fibres, a wide range 
of  behaviour is possible. To maximize fracture 
work, two different approaches may  be used. 
Either a large 7fs should be arranged for, by 
using very long fibres which are very poor ly  
bonded to the matrix, so that  they pull out  rather 
than break. Thus 7~s can have high values, and 
7i is also maximized. At  the most  favourable 
angle (tan r -~ 2), for crf _ efu 

7m~x = O. 11 Vfat , le  . (14a) 

The effect o f  fibre shear at the mos t  favourable 
angle is thus to increase the value o f  7max by a 
factor  o f  up to about  2.7 over the highest value 
for brittle fibres crossing cracks normally. 

The alternative approach  is to use fibres which 
have a very high internal work of  fracture. They 
should be well bonded to the matrix, and have 
an aspect ratio tha t  is at least ten times the 
critical. 
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3.2. Compar i son  with exper iment  
The expressions described so far represent the 
ideal behaviour to be expected with flaw-free 
fibres which interact with the matrix in such a 
way that, at every point on the fibre surface, the 
interracial force has some well-defined value, -ri. 
Neither assumption is entirely justified, but two 
systems have been examined which do, at least, 
come close to having fibres of  uniform strength. 

Helfet and Harris [2] embedded steel wires of 
various lengths in epoxy resins. In the aligned 
fibre case, the fracture surface energy was 
observed to have a maximum value when the 
fibre aspect ratio was about 50. At aspect ratios 
greater than about 100, the fracture energy 
appeared to be approaching that due to the 
work of  fracturing free fibres. Using their values 
for fibre strength, ~fu = 1.20 G N  m -s, and 
critical fibre length, lo = 7.5 ram, the maximum 
toughness should have been 

1 
~ ' m a x  = ~-~ V f / e O ' f u  = 37.5 kJ m -2 �9 

Such a value did not fit their results too well. 
This appears to be a case where the assumption 

of  a well-behaved interfacial shear stress, ~-i, 
needs some modification. It is well known that 
stress transfer can take place as a result of purely 
elastic deformation of the matrix, without any 
slip at the interface [14]. Such stress transfer 
could be occurring where the stresses and strains 
in the fibre are small, i.e. near the fibre end in 
pull-out tests and fracture tests. I f  the elastic 
strains can transfer a stress of about 0.5 GN m -2 
(this requires a bond having a shear strength of  
about 45 MN m-2), then the value of ~-i over the 
rest of  the fibre length should be only about 
7.0 MN m -2. 

The presence of  end stresses modifies the 
expression for ~ ,  to include a term involving 
~rf03/~u3 (see Piggott [10]) so that Equation 4 
becomes 

1 
~,i = ~ V~d'rise 2 

{ ~  + 4crfU__E__ (1 - craf~ (1 - s e ) } ~ - 5 ~ f ~ ]  (4a) 

Using this equation, together with a term for 
the fracture work of the fibres when not em- 
bedded: 

where 7fd = 114 kJ m -2, we get the result shown 
in Fig. 3. For s < sc the equation 

1 
~' = ~2 Vfd~is2 

has been used. It will be seen that agreement 
between the average experimental values and the 
suggested theoretical curve is reasonably good. 

More recently, Allred and Schuster [17] 
reported some pertinent work on boron fibres 
embedded in epoxy resin. Their theory did not 
appear to fit their results, but their results Call be 
fitted into the framework established here. 
Again we have to assume some elastic stress 
transfer, so that cr~ 0 ~ 0.75 G N  m -e, requiring 
a bond able to withstand shear forces of about 
55 MN m -z. The value of ~i comes to only 
about 4.4 MN m -~ compared with the value they 
assume of 12.2 MN m -2. However, this assumed 
value was taken from tests [18] on single, larger 
diameter fibres, embedded in resins subject to 
tensile stresses. It is quite possible that, in 
fracture tests, the contraction of  the fibre away 
from the matrix will reduce this interfacial 
friction stress, compared with its value in the 
tensile tests, where the matrix is contracting onto 
the fibre. (Frictional force = /xR where R is the 
normal force and F is the coefficient of friction; 
R is likely to be very different in the two cases.) 
Fig. 3 shows the curve obtained using Equation 
4a with se having a value of 100 [18]. 

3.3. Cont inuous fibres 
Materials reinforced with ductile fibres which, 
when they fracture, dissipate a large amount of  
internal work (7~d) will exhibit their maximum 
work of fracture when the fibres are continuous. 
In most cases, however, the expressions for 
fracture surface energy yield relatively low 
values for continuous fibres, as compared with 
fibres having the critical length. 

Completely brittle continuous fibres crossing 
cracks normally should have a work of fracture 
given by Equation 1, i.e. 

Vfdefu  ~ 

7 = 12riE~ 

With large diameter fibres, for example by use 
of fibre bundles, quite high values for 7 can be 
obtained, despite the fibres being continuous. 
The results of File et  a l  [12] for glass-fibre- 
bundle reinforced polyester resins indicated that 
values as high as 100 kJ m -~ are possible, even 
for volume fractions as low as about 0.2. Their 
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results with glass and carbon bundles were in 
agreement with Equation 1, except that the 
constant came to about 6, rather than 12. 
Notched bend tests were used to determine the 
fracture surface energy. 

More recently, Mandell and McGarry [11] 
have reported the results of tensile compliance 
tests to measure the fracture energy of carbon 
and glass-bundle reinforced epoxies and poly- 
esters. They observed the same whitening of the 
stressed glass-fibre bundles that Fila et al did, 
but interpreted it as indicating debonding, 
rather than shear flow of material at the inter- 
face. "ri, calculated from the length of the white 
region, visible in Mandell and McGarry's Fig. 4, 
comes to about 38 MN m -S, compared with 
10 to 29 MN m -2 for Fila et al. These values are 
not too far from the shear failure stress of the 
matrix, suggesting that some form of matrix 
shear flow at the interface is not ruled out. Their 
glass fibre bundle results are in good agreement 
with Equation 1, despite the difference in testing 
methods, but as Fila et al observed, it appears 
that the constant should have a value close to 6, 
rather than 12. This may be because of internal 
work in the bundles. 

Fibre bundles are quite likely to have uniform 
strength, since the effects of flaws in individual 
fibres are often swamped by the very large 
numbers of neighbours not having flaws in the 
same region. However, in the case of single 
fibres of carbon and glass, the presence of flaws 
makes the fibre strength far from uniform. The 
incorporation of very long pieces of such flawed, 
single fibres into matrices sometimes leads to 
toughening effects which are much greater than 
to be expected on the basis of Equation 1. 

Beaumont and Harris [7] found that 7 for 
carbon-fibre reinforced epoxy resins came to 
2.5 to 9 kJ m -2 instead of 0.07 kJ m -~ calculated 
from Equation 1 with -ri equal to the minimum 
value of the interlaminar shear strength (50 
MN m-2). In addition, pull-out effects were 
observed. As mentioned earlier, pull-out effects 
with continuous fibres have also been observed 
by Phillips [8]; also Sambell et al observed 
pull-out effect with long fibres [19], and they 
obtained higher fracture energies with continu- 
ous fibres than with short ones [20]. 

These effects may be a consequence of the 
deformation resulting from the stress concentra- 
tion at the crack tip. In the case of isotropic, 
homogeneous, ductile materials, a plastic zone 
is observed. The length of the zone rp, can be 

5OO 

estimated from the expression [21] 

G1E 
rp  ---- 2~.cry 2 

where G1 is the strain-energy release rate, which 
for a crack which is stressed sufficiently to 
propagate, is equal to twice the fracture surface 
energy. E is the modulus, and cry the tensile 
flow stress (or yield stress) of  the material. The 
zone is usually treated as being of approximately 
circular section, having radius rp. 

Similar stress concentrations occur in non- 
isotropic materials, and expressions for stresses 
have been derived for the orthotropic case, which 
includes aligned fibre composites [22]. The 
stresses fall off with distance from the crack, r, 
as r -~/2, which is exactly the same decrease 
obtained with isotropic materials. However, the 
variation of stress with angle of the radius vector 
to the crack plane is different, and so is the 
effective modulus. Thus in the orthotropic case, 
the zone of very high stress will have a different 
shape and cross-sectional area from that in the 
isotropic case. 

For  sufficiently sharp cracks, under sufficiently 
high stresses, a finite zone should exist in which 
the strength of the composite is exceeded. If  the 
breaking strain of the fibres is less than that of  
the matrix, and if the zone is sufficiently extensive 
in the fibre direction, brittle fibres could break 
up into lengths of between le/2 and le [14]. Let 
the length of the zone in the fibre direction be 

aTEeff 
rp = ' 2 (15) 

7TO'cu 

where a is a geometrical constant resulting from 
orthotropy. (a will probably have to be measured 
experimentally, since it is very difficult to calcu- 
late the size and shape of the plastic zone, even 
in isotropic homogeneous materials.) Eef~ is the 
effective modulus [7], and acu is the ultimate 
tensile strength of the composite. 

When the ratio of fibre and matrix moduli is 
greater than 10, Eef~ is given with sufficient 
accuracy (see Halpin and Tsai [23 ], and compare 
with Goggin [24]), by 

Eef~ ~- 5V~/(GmE 0 (16) 

where Gm is the shear modulus of the matrix. 
For Vf ~ 0.1 for strong fibres in a weak matrix, 

~cu -~ Vfcrfu . (17) 

If pull-out occurs, 7 is given by Equation 2 with 
s ~ 3sc/4, i.e. 
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1 
7 ~- ~ Vfd'r~Sc ~" (18) 

Substituting Equations 16, 17 and 18 into 
Equation 15 gives 

ad'r iSe2x/ ( GmEf) . 
rp ~ 15Crfu2 

But for fibre break-up to occur, r o > Ic. Thus for 
fibre break-up we have the condition 

30crfu 
< a (19) 

4(C~E,) 
or for fibres and matrix having about the same 
elastic constants 

150 Vfe~u 
< a . (19a) 

Ef 

Without a knowledge of the value of a, we 
can only put the materials discussed herein in 
order of decreasing likelihood of  pull-out effects 
for initially continuous fibres. This is as follows, 
the values in brackets being the approximate sizes 
of  the left hand side of Equation 19 or 19a. 

carbon in glass (0.52), pull-out most likely; 
carbon in epoxy (2.3); 
boron in epoxy (3.6); 
glass in epoxy (5.1), pull-out least likely. 
Note that neither condition contains ~'i. Thus, 

drastically reducing "ri, as for example ha s been 
done by Harris and co-workers [25], should not 
change the fracture process from fibre pull-out 
to fibre fracture in the crack plane. 

4. Conclusions 
The dependence of fracture energy on aspect 
ratio appears to be far from straightforward. 
Three distinct types of behaviour can be recog- 
nized; which category a material belongs to 
depends mainly on the fibre properties and, to 
a lesser extent, on matrix properties. The 
dominant property is the fibre ductility, and the 
three cases may be listed in order of decreasing 
fibre ductility as follows: 

1. ductile fibres which dissipate a large amount 
of  internal energy when they fracture. Compo- 
sites containing these fibres should be made with 
very long fibres, to maximize the fibres' contribu- 
tion to the work of fracture; 

2. brittle fibres and moderately ductile fibres 
having uniform strength. Pull-out effects will 
give maximum toughness with these fibres, and 
to achieve moderate toughness the fibre length 

should not be greater than about ten times the 
critical length for reinforcement. (The fibre 
length cannot be very much less than this value 
without unduly decreasing stiffness and modulus); 

3. brittle fibres having flaws. The behaviour 
of composites containing these fibres depends on 
the value of the ratio ~fu/~/(E~Gm) (or V~ ~rfu/Ef 
when the elastic properties of fibres and matrix 
are nearly the same). Low values of this ratio 
indicate that pull-out effects can occur with 
continuous fibres. Thus for these cases (e.g. 
carbon fibres in epoxy resins) continuous or very 
long fibres should be used. For composites 
having high values of the ratio, the fibres should 
have aspect ratios of about ten times the critical 
(or somewhat less than this if a significant loss 
in strength and stiffness is acceptable). 

The fibre diameter affects the toughness in the 
moderately ductile, and brittle fibre cases. In these 
cases, the fibre diameter should be as large as 
possible to maximize toughness. Doing this by 
using reinforcing rods made from impregnated 
fibre bundles, however, could transfer a material 
from category 3 to category 2, and so may not 
always be advantageous. 
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